
KÄHLER GROUPS AND THE NON-ABELIAN HODGE

CORRESPONDENCE

L. ALEXANDER BETTS

[These are the notes for the talk I gave in the Harvard study seminar on the
non-abelian Hodge correspondence. Most of this is drawn from §4 of Simpson’s
paper [1].]

1. Introduction

A very general question arising in topology is which groups can arise as funda-
mental groups of certain classes of topological spaces. Unless the class of topological
spaces under consideration is quite restrictive, this kind of question tends to have
a rather uninteresting answer. For instance, any finitely presented group is the
fundamental group of a compact manifold1, and is even the fundamental group of
a compact fourfold. So to get an interesting answer to this question, one wants to
look at more restrictive classes of topological spaces.

Definition 1.1. A Kähler manifold (X,ω) is a complex manifold X endowed with
a Hermitian metric whose associated real (1, 1)-form ω is closed.

Example 1.2.

• Projective space X = PN (C) with the Fubini–Study metric ω is Kähler.
• If X is a complex projective variety embedded in PN

C , then X(C) is a Kähler
manifold with respect to the restriction of the Fubini–Study metric.

• A compact Kähler manifold (X,ω) is a projective variety if and only if ω
is integral, i.e. its cohomology class [ω] ∈ H2(X,R) lies in H2(X,Z).

Definition 1.3. A finitely presented group Γ is Kähler just when it is isomorphic
to the fundamental group of a compact Kähler manifold.

Example 1.4. The group Zn is Kähler if and only if n is even.

Proof. In one direction, if n is even then Zn is the fundamental group of an abelian
variety of dimension n/2.

Conversely, if Zn = π1(X) is Kähler, then by the Hurewicz Theorem we know
that H1(X,Z) = Zn, and hence H1(X,C) = Cn. But we have the Hodge decompo-
sition

H1(X,C) = H1,0(X,C)⊕H0,1(X,C)
and the two factors on the right-hand side are interchanged under complex conju-
gation, so have the same dimension. Thus

n = dimC H1(X,C) = 2 dimC H1,0(X,C)

is even. □

1For this talk, manifold always means manifold without boundary.
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This gives a first indication that Hodge theory can help constrain the class of
Kähler groups, giving us criteria to show that certain groups are not Kähler. Today,
our aim is to explain how one can use the non-abelian Hodge correspondence to
prove the following.

Theorem 1.5. SLn(Z) is not Kähler for n ≥ 3.

2. Variations of Hodge structure

Let’s now recap a few definitions from the previous talks, beginning with the
slightly non-standard notion of a complex Hodge structure.

Definition 2.1. A C-Hodge structure (pure of weight k), or C-HS for short, is a
finite-dimensional C-vector space V endowed with a C-linear decomposition

V =
⊕

p+q=k

V p,q .

A polarisation on V is a pairing

Q : V × V → C ,

which is required to satisfy:

• (sesquilinearity) Q is bilinear, and satisfies Q(λα, µβ) = λµ̄Q(α, β) for
all λ, µ ∈ C and α, β ∈ V ;

• ((−1)k-conjugate symmetry) Q(β, α) = (−1)kQ(α, β) for all α, β ∈ V ;
• the decomposition V =

⊕
p+q=k V

p,q is orthogonal with respect to Q, i.e.

Q(α, β) = 0 if α ∈ V p,q and β ∈ V p′,q′ with (p, q) ̸= (p′, q′);
• ip−qQ is positive-definite on V p,q, i.e. ip−qQ(α, α) > 0 for all non-zero α ∈
V p,q. (In particular, this implies that ip−qQ(α, α) is real.)

We sometimes consider Q as a C-linear map V ⊗C V̄ → C where V̄ denotes V with
the conjugate complex structure.

Given a polarisation Q on V , one can associate a positive-definite Hermitian
form K, by taking the orthogonal direct sum of the pairings ip−qQ on each V p,q.
So, if s denotes the C-linear involution of V which acts by multiplication by (−1)p

on each V p,q, then the Hermitian metric K and the polarisation Q are related by

K(α, β) = i−kQ(α, s(β)) .

Example 2.2. If (X,ω) is a compact Kähler manifold of dimension n, then the
Hodge decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X,C)

makes Hk(X,C) into a C-HS (of weight k) for all k.
These Hodge structures can be decomposed further. Recall that the Lefschetz

operator L : Hk(X,C) → Hk+2(X,C) is the map given by cupping with the Kähler
class [ω]. If k ≤ n, the map

Ln−k : Hk(X,C) ∼−→ H2n−k(X,C)

is a C-linear isomorphism (hard Lefschetz), and we define the primitive part Hk(X,C)prim
is, by definition, the kernel of Ln−k+1 on Hk(X,C). The primitive cohomology is a



KÄHLER GROUPS AND THE NON-ABELIAN HODGE CORRESPONDENCE 3

Hodge substructure of Hk(X,C), and the decomposition

Hk(X,C) =
⊕
j≥0

LjHk−2j(X,C)prim

coming from hard Lefschetz is a decomposition into Hodge substructures.
Both of the above examples are actually polarised Hodge structures. In the case

of the primitive cohomology, one takes the polarisation given by

Q(α, β) =

∫
X

ωn−k ∧ α ∧ β .

As for the polarisation on Hk(X,C), we take the orthogonal direct sum of the
pairings given by2

Q(α, β) = (−1)j
∫
X

ωn−k ∧ α ∧ β

on LjHk−2j(X,C)prim.
Remark 2.3. One can also study Hodge structures with coefficients in rings other
than C, usually either R, Q or Z. For R ∈ {R,Q,Z}, an R-Hodge structure (pure
of weight k) is a finitely generated R-module V together with a decomposition

C⊗R V =
⊕

p+q=k

V p,q

satisfying the additional condition that V p,q = V q,p. A polarisation of an R-HS
is an R-bilinear pairing Q : V ⊗R V → R such that the induced conjugate-linear
pairing on C⊗R V is a polarisation in the above sense.

All of the above examples are actually R-Hodge structures (or more precisely,
they make Hk(X,R) and Hk(X,R)prim into R-Hodge structures), and the polarisa-
tions are defined over R. If X is a complex projective variety (i.e. ω is integral),
then these are all defined over Z.
2.1. Variations. Now let X be a complex manifold. Write A for the sheaf of C∞

complex functions, Ak for the sheaf of C∞ complex k-forms, and Ap,q for the sheaf
of complex (p, q)-forms on X. We will follow the convention that complex local
systems on X are denoted by blackboard bold characters like E, and complex C∞

flat bundles are denoted by calligraphic characters like E (or (E , D) if we want to
name the connection explicitly). In case we forget to say it, E will always be the
flat bundle corresponding to E under the Riemann–Hilbert correspondence, and so
on.

We can make sense of what is meant by a “family of Hodge structures” over the
base X.

Definition 2.4. A variation of C-Hodge structure (pure of weight k), or C-VHS
for short, is a C-local system E on X endowed with an A-linear decomposition

E =
⊕

p+q=k

Ep,q

of the associated flat bundle E := A⊗CE. This decomposition is required to satisfy
the Griffiths transversality condition

D(Ep,q) ⊆ (Ep,q⊗AA1,0)⊕(Ep,q⊗AA0,1)⊕(Ep−1,q+1⊗AA1,0)⊕(Ep+1,q−1⊗AA0,1) .

2I’m a little confused about the sign here: I seem to get that the positive-definiteness condition

requires no sign (−1)j .
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Let’s explain this condition in words. The connection

D : E → E ⊗A A1

can be decomposed into components according to the Hodge decompositions of E
and A1. The Griffiths transversality condition is saying that most of these compo-
nents are zero: the only components that can appear are the ones going from (p, q)
to (p, q, 1, 0), (p, q, 0, 1), (p − 1, q + 1, 1, 0) and (p + 1, q − 1, 0, 1). Note that it we
required more strongly that

D(Ep,q) ⊆ (Ep,q ⊗A A1,0)⊕ (Ep,q ⊗A A0,1) ,

then we would be saying that the decomposition of E is compatible with the con-
nection, i.e. E is a direct sum of flat bundles Ep,q. Roughly speaking, Griffiths
transversality is saying that the decomposition of E is “close” to being compatible
with connections.

A polarisation on E is a C-linear pairing

Q : E⊗C Ē → C

of C-local systems for which the corresponding pairing

Q : E ⊗A Ē → A

of flat bundles satisfies

• Q(β, α) = (−1)kQ(α, β) for all sections α, β of E ;
• the decomposition E =

⊕
p+q=k Ep,q is orthogonal with respect to Q;

• ip−qQ is real-valued and positive-definite on Ep,q, i.e. ip−qQ(α, α) > 0 is a
positive real-valued C∞ function for all non-vanishing sections α of Ep,q.

In other words, the restriction of Q to each fibre of E should be a polarisation of
the Hodge structure Ex.

As before, the pairing

K : E ⊗A Ē → A
given by ip−q on Ep,q is a positive-definite Hermitian form, i.e. is a C∞ Hermitian
metric on the flat bundle E .

Remark 2.5. If E is a (polarised) C-VHS, then the decomposition of E induces a
(polarised) C-HS on each fibre Ex = Ex.

Lemma 2.6. Let E be a C-PVHS and let E0 ≤ E be a sub-C-VHS, with annihilator
E⊥
0 with respect to the polarisation Q (this is also the orthogonal complement with

respect to the Hermitian metric K). Then E⊥
0 is also a sub-C-VHS, and is a

complement to E0, meaning that we have a direct sum decomposition

E = E0 ⊕ E⊥
0 .

When we equip E0 and E⊥
0 with the restriction of the polarisation Q, the above

becomes an orthogonal decomposition of C-PVHS.

Proof. The fact that E0 is a sub-C-VHS means that its associated flat bundle E0
decomposes as

E0 =
⊕

p+q=k

Ep,q
0 ,
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where each Ep,q
0 is an A-submodule of Ep,q (note that the Griffiths transversality

condition on E0 is automatic from). Since the polarisation is, up to a scalar, positive-
definite on each Ep,q, this means that the annihilator of E0 also decomposes as

E⊥
0 =

⊕
p+q=k

(E⊥
0 )p,q ,

where

Ep,q
0 ⊕ (E⊥

0 )p,q = Ep,q .

Thus E⊥
0 is a sub-C-VHS and E = E0 ⊕ E⊥

0 , so E = E0 ⊕ E⊥
0 . □

Now if E is a C-VHS, then by Griffiths transversality we can uniquely decompose
the connection D on the associated flat bundle E as

(1) D = ∂ + ∂̄ + θ + θ̄

where ∂, ∂̄, θ and θ̄ restrict to the components Ep,q as

∂ : Ep,q → Ep,q ⊗A A1,0

∂̄ : Ep,q → Ep,q ⊗A A0,1

θ : Ep,q → Ep−1,q+1 ⊗A A1,0

θ̄ : Ep,q → Ep+1,q−1 ⊗A A0,1 .

It follows from the Leibniz rule for D that ∂ and ∂̄ are connections of type (1, 0)
and (0, 1), i.e. satisfy

∂(fα) = ∂(f)α+ f∂(α) and ∂̄(fα) = ∂̄(f)α+ f∂̄(α) ,

while the maps θ and θ̄ are A-linear.

Lemma 2.7. Suppose that E is a C-PVHS. Then the Hermitian form K satisfies

K(∂α, β) +K(α, ∂̄β) = ∂K(α, β) K(θα, β) = K(α, θ̄β)

K(∂̄α, β) +K(α, ∂β) = ∂̄K(α, β) K(θ̄α, β) = K(α, θβ)

for all sections α, β of E. (Here, we extend K to E-valued forms in the obvious
way. For instance, if η is a section of A1, then K(α, β ⊗ η) := K(α, β)η̄.)

Proof. Since the polarisation Q : E ⊗A Ē → A comes from a morphism of local
systems, it is flat and so we have the identity

Q(Dα, β) +Q(α,Dβ) = dQ(α, β) .

Substituting D = ∂ + ∂̄ + θ + θ̄ and breaking up by type, this shows that

Q(∂α, β) +Q(α, ∂̄β) = ∂Q(α, β) Q(θα, β) +Q(α, θ̄β) = 0

Q(∂̄α, β) +Q(α, ∂β) = ∂̄Q(α, β) Q(θ̄α, β) +Q(α, θβ) = 0 .

(These are easiest to check first for α and β sections of Ep,q and Ep′,q′ , respectively.)
These identities imply the claimed identities for the Hermitian metric K. □

Corollary 2.8. Let E be a C-PVHS on a compact Kähler manifold X. Then the
Hermitian metric K associated to the polarisation Q is harmonic.
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Proof. Recall that a flat connection D on a C∞ vector bundle E can be decomposed
uniquely as

D = ∂K + ∂̄ + θ + θ̄K

for maps

∂K : E → E ⊗A A1,0

∂̄ : E → E ⊗A A0,1

θ : E → E ⊗A A1,0

θ̄K : E → E ⊗A A0,1 ,

where ∂K and ∂̄ are connections of types (1, 0) and (0, 1), θ and θ̄K are A-linear,
and we have the compatibility conditions

K(∂̄α, β) +K(α, ∂Kβ) = ∂̄K(α, β) and K(θα, β) = K(α, θ̄Kβ)

with respect to the metric K. The metric is harmonic if and only if (∂̄ + θ)2 = 0.
In our case, Lemma 2.7 shows that ∂K = ∂ and θ̄K = θ̄. So to check K is

harmonic, we want to verify that (∂̄ + θ)2 = 0. Since D = ∂ + ∂̄ + θ + θ̄, it follows
that

∂̄2 : Ep,q → Ep,q ⊗A A0,2

∂̄θ + θ∂̄ : Ep,q → Ep−1,q+1 ⊗A A1,1

θ2 : Ep−2,q+2 → Ep−2,q+2 ⊗A A2,0

are the corresponding components ofD2 : E → E⊗AA2, so are all zero sinceD2 = 0.
This proves that ∂̄2 = 0, ∂̄θ + θ∂̄ = 0 and θ2 = 0, so K is harmonic. □

Corollary 2.9. Let E be a C-PVHS on a compact Kähler manifold X. Then E is
a semisimple local system.

Proof. A local system is semisimple if and only if its associated flat bundle E admits
a harmonic metric [1, Theorem 1]. □

In what comes, we will need to know another fact about polarised variations of
Hodge structure, which despite its simple statement is remarkably hard to prove.

Theorem 2.10 (Theorem of the fixed part3). Suppose that X is compact, and let E
be a C-PVHS. Then the global sections

H0(X,E) = H0(X, E)D=0

of E is a C-HS, where the Hodge decomposition is the restriction of the decomposi-
tion

H0(X, E) =
⊕

p+q=k

H0(X, Ep,q) .

Proof. We know that H0(X,E) is finite-dimensional, so the claim at issue is that
it is a graded subspace of H0(X, E). In other words, let α ∈ H0(X, E)D=0 be a flat
global section of E , and write

α =
∑

p+q=k

αp,q

for global sections αp,q of Ep,q. We want to show that each αp,q is flat.

3Cite “curvature properties of the hodge bundles”
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We proceed by induction. Suppose that αp−1,q+1 is flat. Taking the (p+ 1, q −
1, 0, 1)- and (p, q, 1, 0)-components of D(α) = 0 shows that

∂̄(αp,q) = 0 and θ(αp,q) = 0 .

Using this and Lemma 2.7, we compute

∂∂̄K(αp,q, αp,q) = ∂K(αp,q, ∂αp,q)

= K(∂αp,q, ∂αp,q) +K(αp,q, ∂̄∂αp,q) .

Now by considering the component of D2 = 0 mapping Ep,q to Ep,q ⊗A A1,1, we
have the identity

∂∂̄ + ∂̄∂ + θθ̄ + θ̄θ = 0 ,

and so ∂̄αp,q + θθ̄αp,q = 0. So we have

i∂∂̄K(αp,q, αp,q) = iK(∂αp,q, ∂αp,q)− iK(θ̄αp,q, θ̄αp,q) .

On the right-hand side, both of the C∞ forms iK(∂αp,q, ∂αp,q) and−iK(θ̄αp,q, θ̄αp,q)
are semi-positive (meaning that they are a non-negative R-linear combination of
differentials locally of the form idz∧d̄z, multiplied by non-negative-valued C∞ func-
tions). So i∂∂̄K(αp,q, αp,q) is also semi-positive. This means (by definition) that
the C∞ function K(αp,q, αp,q) is plurisubharmonic. But the only plurisubharmonic
functions on a compact manifold are constants, so we obtain that

iK(∂αp,q, ∂αp,q) = −iK(θ̄αp,q, θ̄αp,q) = 0 .

Since K is positive-definite, this means that we must have ∂αp,q = 0 and θ̄αp,q = 0,
so D(αp,q) = 0 and αp,q is flat. This completes the induction. □

3. Groups of Hodge type

In this section, we will study more carefully the monodromy representation

ρ : π1(X) → GL(Ex)(C)

associated to a C-PVHS E on a compact Kähler manifold X. Let G ≤ GL(Ex) be
the complex monodromy group, i.e. the Zariski-closure of im(ρ).

Lemma 3.1. G is reductive.

Proof. We saw in Corollary 2.9 that ρ is a semisimple representation. The mon-
odromy group of any semisimple representation is always reductive. □

There are two other interesting groups attached to the representation ρ. On the
one hand, we define the real monodromy group W ≤ ResCR GL(Ex) to be the Zariski-
closure of im(ρ) inside the Weil restriction ResCR GL(Ex). On the other, we define
the unitary subgroup U ≤ ResCR GL(Ex) to be the intersection of ResCRG with the
group U(Ex,Kx) ≤ ResCR GL(Ex) of matrices preserving the Hermitian form Kx.
Since U(Ex,Kx) is compact4, it follows that U is compact.

Lemma 3.2. U is a compact real form of G.

4Meaning that its R-points are a compact group.
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Before we get to the proof, let’s recall what is meant by a real form. If G is an
affine algebraic group over C, then a real form of G is a real algebraic subgroup
G0 ≤ ResCRG such that the induced map G0,C → G is an isomorphism. If G0 is a
real form of G, then there is an associated automorphism σ of ResCRG = ResCRG0,C.
On A-points for an R-algebra A, this is just the automorphism of

(ResCRG)(A) = G0(C⊗R A)

given by the conjugation on C ⊗R A. We call σ the conjugation associated to the
real form G0. It is an involution of ResCRG, and acts C-antilinearly on the tangent
bundle of ResCRG (which has a canonical complex structure). The real form G0 is
then the fixed locus of σ. This gives us a characterisation of the real forms of G,
which is essentially just Galois descent.

Lemma 3.3. For an affine algebraic group G over C, the set of real forms of G
is in bijection with the set of conjugations on G (involutions which act antilinearly
on the tangent bundle).

A compact real form of G is a real form U such that:

• U(R) is compact; and
• U(R) meets every connected component of G(C) (equivalently, the scheme
of connected components of U is a disjoint union of copies of Spec(R).)

A theorem of Cartan implies that any complex reductive group G has a compact
real form, unique up to conjugation.

Example 3.4. Fix a Hermitian metric K on Cn, and let U(Cn,K) ≤ ResCR GLn,C
be the unitary group associated to K. Then U(Cn,K) is a real form of GLn,C; the
corresponding conjugation τ is given by

τ(g) := (g†)−1 ,

where g† denotes the Hermitian adjoint with respect to K. This is a compact real
form.

Now let us prove Lemma 3.2. Let τ denote the conjugation on GL(Ex) associated
to the Hermitian metric Kx. The key claim we will prove is that τ preserves the
subgroup G, and so restricts to a conjugation on G. For this, since G is reductive,
we know that there is a C-subspace

S ≤ T a,bEx := E⊗a
x ⊗ E∗⊗b

x

for some a, b such that G is the subgroup of GL(Ex) fixing S pointwise. We may
as well take S to be the largest such subspace, i.e.

S = (T a,bEx)
G = (T a,bEx)

π1(X) = H0(X,T a,bE) ,

where T a,bE = E⊗a ⊗ E∗⊗b (which is a C-PVHS in a natural way). The theorem
of the fixed part (Theorem 2.10) tells us that S is actually a C-Hodge substructure
of T a,bEx.

Now let S = C⊗C S denote the constant local system associated to S, which is a
sub-C-VHS of T a,bE. So if S⊥ denotes its orthogonal complement with respect to
the polarisation, then we have (Lemma 2.6) an orthogonal decomposition

T a,bE = S⊕ S⊥

of C-PVHS.
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Now any element g ∈ GL(Ex)(C) can be written uniquely as u exp(y) where u ∈
U(Ex,Kx)(R) and y ∈ Lie(GL(Ex)) = End(Ex) is in the −1 eigenspace for τ , i.e.
y is Hermitian symmetric with respect to Kx. If we let ρ′ : GL(Ex) → GL(T a,bEx)
denote the natural representation, then ρ′(u) is a unitary automorphism (with
respect to the induced Hermitian metric on T a,bEx) and dρ′(y) is a Hermitian-
antisymmetric endomorphism. If the element g lies in G(C), then by definition ρ′(g)
fixes the subspace S pointwise, and also fixes the orthogonal complement S⊥ setwise
since this is the fibre of the local system S⊥. This implies that the unitary com-
ponent ρ′(u) of ρ′(g) and exp(dρ′(y)) both preserve the decomposition T a,bEx =
S ⊕ S⊥ and act trivially on S. This implies (by choice of S) that u ∈ G(C)
and y ∈ Lie(G). In particular, we have

τ(g) = u exp(−y) ∈ G(C) ,

so τ restricts to a conjugation on G. The associated real form is U = ResCRG
τ .

It is clear that U(R) is compact. Finally, it is clear that U(R) meets every
component of G(C), since for any element g = u exp(y) ∈ G(C), the path [0, 1] →
G(C) given by

t 7→ u exp(ty)

connects u ∈ U(R) to g ∈ G(C). □
Having shown that U is a real form of G, we can now show the same for the real

monodromy group W .

Lemma 3.5. W is a real form of G.

Proof. Let ψ : Gm → GL(Ex) be the action of Gm on Ex where λ acts on Ep,q
x by

multiplication by λp. Since the space S ≤ T a,bEx considered above is a C-Hodge
substructure, it is stable under the action of Gm. This implies that Gm normalises
the subgroup G ≤ GL(Ex), and so there is an induced conjugation action of Gm

on G.
By inspection, the unit circle group U(1) ≤ ResCR Gm commutes with the conju-

gation τ (which is the inverse Hermitian adjoint with respect to Kx). Let C be the
automorphism of G given by the action of −1 ∈ C× and let

σ := Cτ = τC .

It follows that σ is another complex conjugation on G; let W ′ denote the corre-
sponding real form. For any g ∈ G(C) we have

Qx(gα, σ(g)β) = Qx(gα, ψ(−1) · τ(g)(ψ(−1) · β))

= ikKx(gα, τ(g)(ψ(−1) · β))

= ikKx(α,ψ(−1) · β)
= Qx(α, β) ,

and so σ is the inverse Hermitian adjoint with respect to the indefinite sesquilinear
pairing Qx. So W

′ is the subgroup of G preserving Qx.
Since the polarisation Q on E is a morphism of local systems, it follows that the

action of π1(X) on Ex preserves Qx, so W ≤ W ′. In fact, we must have equality
since ρ is Zariski-dense in both W and G =W ′

C. □

Let us summarise what we have learned in a definition.
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Definition 3.6. A real affine algebraic group W is said to be of Hodge type just
when there is an action of Gm on the complexification G =WC such that:

• the action of U(1) commutes with the conjugation σ associated toW (equiv-
alently, U(1) preserves W setwise); and

• if C denotes the action of −1 ∈ C×, then the real form associated to the
conjugation

τ = Cσ = σC

is a compact real form of G.

Theorem 3.7. The real monodromy group W associated to a C-PVHS E on a
compact Kähler manifold X is of Hodge type, and the complexification G of W is
the complex monodromy group.

Proof. We’ve just proved this. □

It turns out that being of Hodge type imposes strong restrictions on the groupW ,
see [1, §4]. For our purposes, we note only that

Lemma 3.8. For n ≥ 3, the group SLn,R is not of Hodge type.

4. Rigid representations

Now we begin to return to the study of Kähler groups. One key insight in the
work of Simpson is that among representations of fundamental groups of compact
Kähler manifolds, a special role is played by those which are rigid, which means
that they cannot be continuously deformed to a non-isomorphic representation.

Definition 4.1. Let Γ be a finitely presented group and G a complex reductive
group. Let Hom(Γ, G) denote the complex variety parametrising homomorphisms
ρ : Γ → G(C). (If g1, . . . , gn are generators of Γ, then we can identify Hom(Γ, G)
as a closed subvariety of Gn, corresponding to seeing where these generators are
mapped to in G.) There is an action of G on Hom(Γ, G) by conjugation.

A representation ρ : Γ → G(C) is called rigid just when itsG-orbit in Hom(Γ, G(C))
is open (in the complex topology). This means that any ρ′ sufficiently close to ρ
must be conjugate to it under an element of G.

Mildly more generally, a representation ρ is called properly rigid just when it is
rigid as a representation into the Zariski-closure of im(ρ). (In practice, there is no
need to distinguish between rigid and properly rigid representations, since one can
usually just shrink the group G.)

The main result we want to extract from Simpson’s non-abelian Hodge cor-
respondence asserts that rigid representations of fundamental groups come from
complex polarised variations of Hodge structure.

Theorem 4.2. Let X be a compact Kähler manifold and G a complex reductive
group. If a representation ρ : π1(X) → G(C) is (properly) rigid, then the associated
local system E underlies a C-PVHS.

4.1. The C× action. We’ve basically already seen the proof of Theorem 4.2 in
previous talks, but I’ll recall the method here. There is a natural action of C× on
the set of isomorphism classes of Higgs bundles, given by

t : (E, θ) 7→ (E, tθ) .
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This action lifts to an action on the set of isomorphism classes of framed Higgs
bundles, i.e. Higgs bundles (E, θ) together with a chosen basis of Ex for x ∈ X some
fixed basepoint. This action preserves the subset of polystable Higgs bundles with
vanishing Chern classes, so induces through the non-abelian Hodge correspondence
an action of C× on the set of isomorphism classes of semisimple (framed) C-local
systems, denoted by

t : E 7→ Et .

Lemma 4.3. If a semisimple local system E on a compact Kähler manifold satisfies
E ∼= Et for some t ∈ C× not a root of unity, then E underlies a C-PVHS.

Proof. Let (E, θ) be the Higgs bundle corresponding to E under the non-abelian

Hodge correspondence. By assumption, there is an isomorphism f : (E, θ)
∼−→

(E, tθ), i.e. a holomorphic automorphism f : E → E such that fθ = tθf . The
coefficients of the characteristic polynomial of the automorphism f are then holo-
morphic functions on X, so constant. In particular, f has the same eigenvalues on
every fibre, and we can decompose

E =
⊕
λ

Eλ

according to the generalised eigenvalues λ of f . Note that λ = 0 is not an eigenvalue
of f , since f is an automorphism. Moreover, since

(f − tλ)nθ = tnθ(f − λ)n ,

it follows that θ maps Eλ to Etλ⊗OX
Ω1

X . Since t is not a root of unity, by grouping
up the eigenvalues of f we can decompose E into holomorphic subbundles

E =
⊕
i

Ei

indexed by integers i such that θ maps Ei into Ei−1⊗OX
Ω1

X . (This says that E has
the structure of a system of Hodge bundles in the language of Simpson’s paper.)

Thus one obtains an A-linear decomposition

(2) E =
⊕
i

Ei

of the associated flat bundle E = A⊗OX
E. The connection D on E decomposes as

D = ∂K + ∂̄ + θ + θ̄K ,

where ∂̄ and θ are induced from the same-named operators on A and E, and ∂K
and θ̄K are obtained from them via the compatibility conditions

K(∂̄α, β) +K(α, ∂Kβ) = ∂̄K(α, β) and K(θα, β) = K(α, θ̄Kβ)

with respect to the harmonic metricK. In particular, ∂̄ and θ are graded of degree 0
and −1 with respect to the decomposition (2).

Now there is a natural action of U(1) on E by automorphisms of Higgs bundles
(λ ∈ U(1) acting as λi on Ei), and Simpson’s construction of the metric K shows
that it can be taken to be U(1)-invariant, i.e. such that the decomposition (2) is
orthogonal. The compatibility conditions then imply that ∂K and θ̄K are graded
of degree 0 and 1, and hence the local system associated to E is a C-PVHS. □

The other ingredient we need for the proof of Theorem 4.2 is the fact that the
C× on local systems preserves monodromy groups.
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Lemma 4.4. Let E be a semisimple local system. Then for any t ∈ C×, the mon-
odromy groups of E and Et are equal. (The fibres of E and Et can both be identified
with Ex where (E, θ) is the Higgs bundle associated to E, so the monodromy groups
live inside the same space.)

Proof. The monodromy group of E is exactly the group of automorphisms of Ex

which preserve Sx ⊆ T a,bEx setwise for every local subsystem S ⊆ T a,bE and ev-
ery a, b. The non-abelian Hodge correspondence implies that this group can be
characterised in terms of the associated Higgs bundle (E, θ): it is the group of
automorphisms of Ex which preserve Sx setwise for every degree 0 Higgs subbun-
dle S ⊆ T a,bE and every a, b. Since the tensor powers of (E, θ) and (E, tθ) have
the same Higgs subbundles, this implies the result. □

Consequently, we can prove Theorem 4.2. We know that the representations ρt
attached to the local systems Et all have image contained in G, and moreover ρt → ρ
as t→ 1 by [1, Lemma 2.8]. So by rigidity, we deduce that ρt and ρ are conjugate
when t is sufficiently close to 1. So Et and E are isomorphic, and hence (taking t
not a root of unity) we get that E underlies a C-PVHS.

4.2. Application to Kähler groups. Finally, we can distil all of this theory into
a purely group-theoretic necessary criterion for a group to be Kähler.

Theorem 4.5. Let Γ be a Kähler group and G a complex reductive group. Then
for every (properly) rigid representation ρ : Γ → G(C), the real Zariski-closure W
of im(ρ) is of Hodge type, and G =WC is its complexification.

Proof. Combine Theorems 3.7 and 4.2. □

Lemma 4.6. For n ≥ 3, the standard representation

SLn(Z) → SLn(C)
is rigid.

Consequently, we see that SLn(Z) is not Kähler for n ≥ 3. Indeed, if it were,
then SLn,R would be of Hodge type by Theorem 4.5, but it is not (Lemma 3.8). □
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