Unexpected algebraic points
in non-abelian Chabauty loci

ongoing work, incl. joint work with Jennifer Balakrishnan

slides available at lalexanderbetts.net



Aim of this talk

A new conceptualisation of quadratic Chabauty which is of a
more algebraic (as opposed to p-adic analytic) nature, and its
connections to the theory of unlikely intersections.



Motivation: Kim’s Conjecture



Setup and notation

* X a smooth hyperbolic curve over Q, and b € X(Q)
* g = genus, ] = Jac(X), r = rk(J(Q)), p = rk(NS()(Q)).

* p a prime of good reduction; U a quotient of n?p(X@; b)
* U = U, abelianisation.
« U = U,, maximal depth n quotient.
* U = Uqyc an extension of Uy by Q,(1)P~.

w X((@p)U c X(Q,) containing X(Q)



Kim's Conjecture

Conjecture (Kim, "12; Balakrishnan—Dan-Cohen—Kim—Wewers '18):

It U is large enough, then
X(Qp)u = X(Q) .




When do we expect X((@p)U = X(Q)?

X(Qp)u is the common vanishing locus of some number of
Coleman analytic functions.

* If 0 functions, then X((@p)u = X(Qp). ®
e If 1 function, then X(Qp)u is finite. ©
* If > 2 functions, then X((@p)u is overdetermined. © © ?

Nalve guess:
If X(Qp), is cut out by > 2 independent Coleman functions,
then itis equal to X(Q).




Example #1

(Balakrishnan—Bianchi—Ciperiani—Cantoral-Farfan—Etropolski, ‘19)

X is the hyperelliptic curve with equation
y? = 4x7 +9x°% — 8x> — 9x* — 16x3 + 32x% +32x + 8.

X(Q,){ = {0, (—1,+1),(1,+5)} U {Weierstrass pts} U {(0, +2v2)}



Example #2

(Hashimoto—Morrison, ‘21)

genus 3, rank 1

X is the Picard curve with equation
y3=x*+2x3+6x2+5x+2.

X(Q11)1 = {0} U {(1/2,13/16)}
cut out by /

2 functions



Example #3
(Bianchi, ‘'20)

X is the once-punctured elliptic curve with equation

2 3 2
ye+xy+y=x>—x“—91x—310.
\rankO

X(Zs)z = {(52 £ D)}

cut out by /

2 functions



Example #4

(Corwin—Dan-Cohen, '20)
X is the thrice-punctured line over Z[%], £ an odd prime.

X(Zp){{)}’ PL n 3 —1 for alln.

cut out by arbitrarily
many functions



Stoll’'s Conjecture

Conjecture (Stoll, ‘07):

Suppose that X is smooth projective, with g —r = 2. Then there
exists a finite subscheme Z c X defined over Q such that

X(Qp)l s Z(Qp)

for all primes p in a set of density 1.

= every element of X((@p)1 is algebraic over Q.

= the size ofX((@p)1 is bounded uniformly.



Non-abelian Stoll's Conjecture

Conjecture (after Stoll, Bianchi):

Suppose that U = U? is a quotient of p(XQ, b) of motivic
origin, such that X(Q,) Jp 1S cut out by > 2 mdependent

functions. Let U? be the corresponding quotient of q(XQ, b).

Then there is a finite subscheme Z c X defined over Q such that
X(@CI)UCI s Z(@CI)

for a density 1 set of primes gq.



Unlikely Intersections

part 1: abelian Chabauty



Abelian Chabauty

Abelian Chabauty, or Chabauty—Coleman, is the special case of
non-abelian Chabauty when U = U, is the abelianisation of

Tl'?p (X@; b).

The quotient U; can also be thought of as the fundamental
group of the Jacobian J, and it is possible to describe X(QP)1
purely in terms of J.



Abelian Chabauty

X(Q) s Q) — Qe Tw)
f J’Loc?

X(Qp) —> T(GQf) > Qp & T (6]

el 7

Fact: X(Qy), = j1 (im(loc,))




Torsion packets

If r = 0, then X((@p)1 is the kernel of the composition

K(Qp) — T(@f) —> @F®7(@p)

a.k.a. the torsion packet containing b € X(Q).

Manin—Mumford = all torsion packets are finite.

Corollary:
Stoll’s Conjecture holds when r = 0.




Unlikely Intersections

part 2: quadratic Chabauty



Quadratic Chabauty

Quadratic Chabauty is non-abelian Chabauty for U = Uy an
extension of U; by Q,(1)?~*. Which one?

(= Edixhoven-Lido, '21) There is a natural Gﬁl_l—torsor P over]J

whose pullback to X is trivial. P

Uqc is the fundamental group of P. X < ? j




Quadratic Chabauty

We give a new description of X(QP)QC solely in terms of P,
rather than the quotient Uq.

* Inspired by the geometric quadratic Chabauty obstruction of
Edixhoven and Lido.

» Geometric quadratic Chabauty locus X(QP)GQC c X(Qp)
containing X(Q), defined solely in terms of P.

« Geometric quadratic Chabauty is at least as strong as usual
quadratic Chabauty, and sometimes stronger (Duque-Rosero—
Hashimoto—Spelier, '23).



Cubical structures (Breen, '‘83)

If A and G are abelian groups, and P is a G-torsor over 4, then

we define
1)3—#1

03(P) = Qcq1,2,3) miPC :
where m;: A3 - A is addition of the coordinates in I.

A cubical structure on P is a trivialisation of @5 (P) satisfying
certain conditions. A cubical torsor is a torsor with a cubical
structure.



Examples of cubical torsors

* Any Gl,-torsor over any abelian variety comes with a unique
cubical structure (theorem of the cube).

* If P is a central extension of A by G, one can use the group law
to endow P with a cubical structure.

* If P is a finitely generated cubical torsor, then it has a vectorial
hull Q ® P, which is a cubical (Q ® G)-torsor over Q ® A.

* If P is a finitely generated profinite cubical torsor, then it has a
vectorial hull Q, ® P, which is a cubical (Q,® G)-torsor over

Q, ® A.



Quadratic Chabauty, revisited

Assume for simplicity that X has everywhere potentially good
reduction.

Let PY be the identity component of the Neron model of P.

. . -1
Itis a cubical G!", -torsor over J°.



Quadratic Chabauty, revisited

X(Q) 5 P(z) — QP
f J’Loc?

X (Qp) ——> ‘P (zzf) > Qp &Pz,

A0t 7

Theorem (B., in progress):

X(QP)QC = Jp.2 (im(locp))




|dea of the proof

lemma (B.):

H7 (Gp, Ugc) = Qp ® PO(Z)

Proof sketch:
1. The cubical structure on P° induces one on H}(Gp, Uqc)-

2. The Kummer map P°(Z,) - H} (G, Ugc) factors uniquely
through a map Q, ® P°(Z,) - H} (G, Ugc)-

3. The factored map is an iso because Q,, ®](Qp) — H}(Gp, Uy)
and Qp ® Gy (Z,) = HF (G, Qp(1)) are.




Higher torsion packets

When r = 0, we have Q, ® P°(Z) = 0, and so X(QP)QC is the
kernel of the composition

X(Q,)— P(Z,) —> Qpe P°(7)

We call the fibres of this map the higher torsion packets on X.

Theorem "Manin—Mumford for torus-torsors” (B., in progress):

If X is a hyperbolic curve, then all higher torsion packets in X are
finite.




A case of non-abelian Stoll's Conjecture

Theorem (B., in progress):

Non-abelian Stoll's Conjecture holds for X(QP)QC whenr = 0.

Most interesting when X is a once-punctured elliptic curve.




Unexpected points on once-
punctured elliptic curves

joint with Jennifer Balakrishnan



Once-punctured elliptic curves

X = E \ {o} with E an elliptic curve of rank 0.
= exists a finite subscheme Z ¢ X with

X(ZP)Z = X(ZP)QC = Z(QP)

for all primes p of good reduction.

What is Z? What kinds of irrational algebraic points can it
contain? We call these unexpected points.



Torsion orders of unexpected points

 Every unexpected point is a torsion point on E (Bianchi, ‘20).

« Our new description of X(Zp)2 gives an explicit, purely

algebraic description in terms of division polynomials,
independent of p.

Theorem (Balakrishnan—B., in progress):

Suppose that Q is an unexpected point on X, of order N < 50.
Then
N €{2,3,4,5,6,7,8,9,10,12} U {15} .




Example #5

(Balakrishnan—B.)

X is the once-punctured elliptic curve with equation
y? 4+ xy = x> — 262888x — 62568608 .

Then the 15-torsion points with x-coordinate —123 + 295+/5 lie
in X(Zp)2 whenever they are Q,-rational.



Happy Birthday Minhyong!



