Unexpected algebraic points in non-abelian Chabauty loci

ongoing work, incl. joint work with Jennifer Balakrishnan

slides available at lalexanderbetts.net

Aim of this talk

A new conceptualisation of quadratic Chabauty which is of a more algebraic (as opposed to *p*-adic analytic) nature, and its connections to the theory of unlikely intersections.

Motivation: Kim's Conjecture

Setup and notation

- X a smooth hyperbolic curve over \mathbb{Q} , and $b \in X(\mathbb{Q})$
- $g = \text{genus}, J = \text{Jac}(X), r = \text{rk}(J(\mathbb{Q})), \rho = \text{rk}(NS(J)(\mathbb{Q})).$
- p a prime of good reduction; U a quotient of $\pi_1^{\mathbb{Q}_p}(X_{\overline{\mathbb{Q}}}; b)$
 - $U = U_1$ abelianisation.
 - $U = U_n$ maximal depth n quotient.
 - $U = U_{QC}$ an extension of U_1 by $\mathbb{Q}_p(1)^{\rho-1}$.

$$\twoheadrightarrow X(\mathbb{Q}_p)_U \subseteq X(\mathbb{Q}_p)$$
 containing $X(\mathbb{Q})$

Kim's Conjecture

<u>Conjecture (Kim, '12; Balakrishnan–Dan-Cohen–Kim–Wewers '18)</u>: If *U* is large enough, then $X(\mathbb{Q}_p)_U = X(\mathbb{Q})$.

When do we expect $X(\mathbb{Q}_p)_U = X(\mathbb{Q})$?

 $X(\mathbb{Q}_p)_U$ is the common vanishing locus of some number of Coleman analytic functions.

- If 0 functions, then $X(\mathbb{Q}_p)_U = X(\mathbb{Q}_p)$. \otimes
- If 1 function, then $X(\mathbb{Q}_p)_U$ is finite. \odot
- If ≥ 2 functions, then $X(\mathbb{Q}_p)_{II}$ is overdetermined. $\odot \odot$?

Naïve guess:

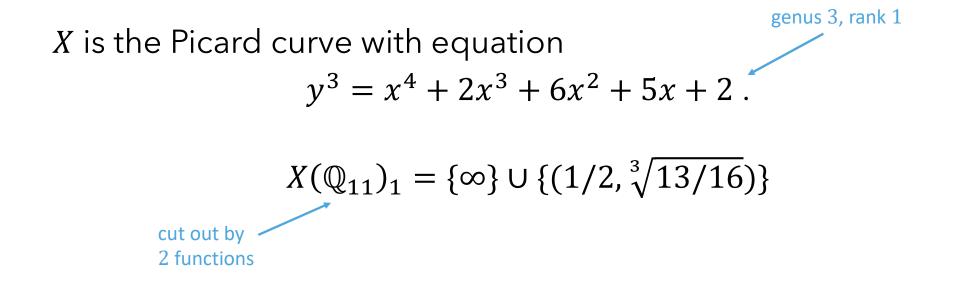
If $X(\mathbb{Q}_p)_U$ is cut out by ≥ 2 independent Coleman functions, then it is equal to $X(\mathbb{Q})$.

(Balakrishnan-Bianchi-Çiperiani-Cantoral-Farfán-Etropolski, '19)

X is the hyperelliptic curve with equation $y^2 = 4x^7 + 9x^6 - 8x^5 - 9x^4 - 16x^3 + 32x^2 + 32x + 8.$

 $X(\mathbb{Q}_7)_1 = \{\infty, (-1, \pm 1), (1, \pm 5)\} \cup \{\text{Weierstrass pts}\} \cup \{(0, \pm 2\sqrt{2})\}$ cut out by 2 functions

(Hashimoto–Morrison, '21)



(Bianchi, '20)

X is the once-punctured elliptic curve with equation $y^{2} + xy + y = x^{3} - x^{2} - 91x - 310.$ rank 0 $X(\mathbb{Z}_{5})_{2} = \{(5, 2 \pm i)\}$ cut out by 2 functions

cut out

(Corwin–Dan-Cohen, '20)

X is the thrice-punctured line over $\mathbb{Z}[\frac{1}{\ell}]$, ℓ an odd prime.

$$X(\mathbb{Z}_p)_{\{\ell\}, \text{PL}, n} \ni -1 \text{ for all } n.$$

cut out by arbitrarily
many functions

Stoll's Conjecture

<u>Conjecture (Stoll, '07):</u>

Suppose that X is smooth projective, with $g - r \ge 2$. Then there exists a finite subscheme $Z \subset X$ defined over \mathbb{Q} such that

$$X(\mathbb{Q}_p)_1 \subseteq Z(\mathbb{Q}_p)$$

for all primes p in a set of density 1.

⇒ every element of $X(\mathbb{Q}_p)_1$ is algebraic over \mathbb{Q} . ⇒ the size of $X(\mathbb{Q}_p)_1$ is bounded uniformly.

Non-abelian Stoll's Conjecture

<u>Conjecture (after Stoll, Bianchi):</u>

Suppose that $U = U^p$ is a quotient of $\pi_1^{\mathbb{Q}_p}(X_{\overline{\mathbb{Q}}}; b)$ of motivic origin, such that $X(\mathbb{Q}_p)_{U^p}$ is cut out by ≥ 2 independent functions. Let U^q be the corresponding quotient of $\pi_1^{\mathbb{Q}_q}(X_{\overline{\mathbb{Q}}}; b)$.

Then there is a finite subscheme $Z \subset X$ defined over \mathbb{Q} such that $X(\mathbb{Q}_q)_{U^q} \subseteq Z(\mathbb{Q}_q)$

for a density 1 set of primes q.

Unlikely Intersections

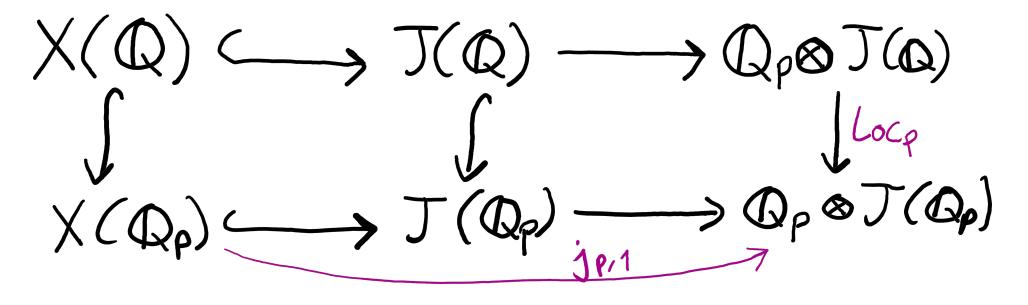
part 1: abelian Chabauty

Abelian Chabauty

Abelian Chabauty, or Chabauty–Coleman, is the special case of non-abelian Chabauty when $U = U_1$ is the abelianisation of $\pi_1^{\mathbb{Q}p}(X_{\overline{\mathbb{Q}}}; b)$.

The quotient U_1 can also be thought of as the fundamental group of the Jacobian J, and it is possible to describe $X(\mathbb{Q}_p)_1$ purely in terms of J.

Abelian Chabauty



Fact:
$$X(\mathbb{Q}_p)_1 = j_{p,1}^{-1}(\operatorname{im}(loc_p))$$

Torsion packets

If r = 0, then $X(\mathbb{Q}_p)_1$ is the kernel of the composition $\chi(\mathbb{Q}_p) \longrightarrow \mathcal{J}(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p \otimes \mathcal{J}(\mathbb{Q}_p)$

a.k.a. the torsion packet containing $b \in X(\mathbb{Q})$.

Manin–Mumford \Rightarrow all torsion packets are finite.

<u>Corollary:</u> Stoll's Conjecture holds when r = 0.

Unlikely Intersections

part 2: quadratic Chabauty

Quadratic Chabauty

Quadratic Chabauty is non-abelian Chabauty for $U = U_{QC}$ an extension of U_1 by $\mathbb{Q}_p(1)^{\rho-1}$. Which one?

(\approx Edixhoven–Lido, '21) There is a natural $\mathbb{G}_m^{\rho-1}$ -torsor *P* over *J* whose pullback to *X* is trivial.

 $U_{\rm QC}$ is the fundamental group of *P*.

Quadratic Chabauty

We give a new description of $X(\mathbb{Q}_p)_{QC}$ solely in terms of P, rather than the quotient U_{QC} .

- Inspired by the *geometric quadratic Chabauty* obstruction of Edixhoven and Lido.
- Geometric quadratic Chabauty locus $X(\mathbb{Q}_p)_{GQC} \subseteq X(\mathbb{Q}_p)$ containing $X(\mathbb{Q})$, defined solely in terms of P.
- Geometric quadratic Chabauty is at least as strong as usual quadratic Chabauty, and sometimes stronger (Duque-Rosero– Hashimoto–Spelier, '23).

Cubical structures (Breen, '83)

If A and G are abelian groups, and P is a G-torsor over A, then we define

$$\Theta_3(P) \coloneqq \bigotimes_{I \subseteq \{1,2,3\}} m_I^* P^{(-1)^{3-\#I}}$$

where $m_I: A^3 \rightarrow A$ is addition of the coordinates in *I*.

A cubical structure on P is a trivialisation of $\Theta_3(P)$ satisfying certain conditions. A cubical torsor is a torsor with a cubical structure.

Examples of cubical torsors

- Any \mathbb{G}_m^r -torsor over any abelian variety comes with a unique cubical structure (theorem of the cube).
- If *P* is a central extension of *A* by *G*, one can use the group law to endow *P* with a cubical structure.
- If *P* is a finitely generated cubical torsor, then it has a *vectorial* hull $\mathbb{Q} \otimes P$, which is a cubical ($\mathbb{Q} \otimes G$)-torsor over $\mathbb{Q} \otimes A$.
- If *P* is a finitely generated profinite cubical torsor, then it has a *vectorial hull* $\mathbb{Q}_p \otimes P$, which is a cubical ($\mathbb{Q}_p \otimes G$)-torsor over $\mathbb{Q}_p \otimes A$.

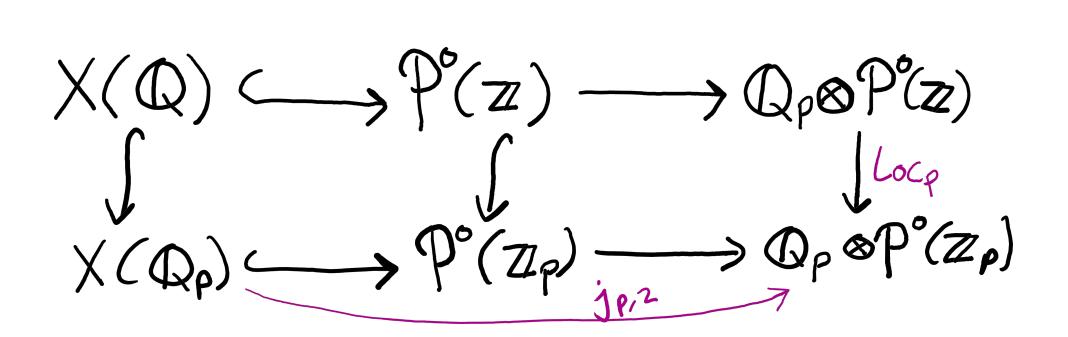
Quadratic Chabauty, revisited

Assume for simplicity that *X* has everywhere potentially good reduction.

Let \mathcal{P}^0 be the identity component of the Neron model of *P*.

It is a cubical
$$\mathbb{G}_{m,\mathbb{Z}}^{\rho-1}$$
 -torsor over \mathcal{J}^0 .

Quadratic Chabauty, revisited



<u>Theorem (B., in progress):</u>

$$X(\mathbb{Q}_p)_{\mathrm{QC}} = j_{p,2}^{-1}\left(\mathrm{im}(loc_p)\right)$$

Idea of the proof

<u>Lemma (B.):</u>

$$\mathrm{H}^{1}_{f}(G_{p}, U_{\mathrm{QC}}) \cong \mathbb{Q}_{p} \otimes \mathcal{P}^{0}(\mathbb{Z}_{p})$$

Proof sketch:

- 1. The cubical structure on \mathcal{P}^0 induces one on $H^1_f(G_p, U_{QC})$.
- 2. The Kummer map $\mathcal{P}^0(\mathbb{Z}_p) \to \mathrm{H}^1_f(G_p, U_{\mathrm{QC}})$ factors uniquely through a map $\mathbb{Q}_p \otimes \mathcal{P}^0(\mathbb{Z}_p) \to \mathrm{H}^1_f(G_p, U_{\mathrm{QC}})$.
- 3. The factored map is an iso because $\mathbb{Q}_p \otimes J(\mathbb{Q}_p) \to H^1_f(G_p, U_1)$ and $\mathbb{Q}_p \otimes \mathbb{G}_m(\mathbb{Z}_p) \to H^1_f(G_p, \mathbb{Q}_p(1))$ are.

Higher torsion packets

When r = 0, we have $\mathbb{Q}_p \otimes \mathcal{P}^0(\mathbb{Z}) = 0$, and so $X(\mathbb{Q}_p)_{QC}$ is the kernel of the composition

$$\chi(\mathbb{Q}_p) \longrightarrow \mathbb{P}^{\circ}(\mathbb{Z}_p) \longrightarrow \mathbb{Q}_p \otimes \mathbb{P}^{\circ}(\mathbb{Z}_p)$$

We call the fibres of this map the *higher torsion packets* on *X*.

Theorem "Manin–Mumford for torus-torsors" (B., in progress): If X is a hyperbolic curve, then all higher torsion packets in X are finite.

A case of non-abelian Stoll's Conjecture

<u>Theorem (B., in progress):</u>

Non-abelian Stoll's Conjecture holds for $X(\mathbb{Q}_p)_{\text{oc}}$ when r = 0.

Most interesting when X is a once-punctured elliptic curve.

Unexpected points on oncepunctured elliptic curves

joint with Jennifer Balakrishnan

Once-punctured elliptic curves

 $X = E \setminus \{\infty\}$ with *E* an elliptic curve of rank 0. \Rightarrow exists a finite subscheme $Z \subset X$ with $Y(\pi) = Y(\pi) = Z(0)$

$$X(\mathbb{Z}_p)_2 = X(\mathbb{Z}_p)_{QC} = Z(\mathbb{Q}_p)$$

for all primes p of good reduction.

What is *Z*? What kinds of irrational algebraic points can it contain? We call these *unexpected points*.

Torsion orders of unexpected points

- Every unexpected point is a torsion point on E (Bianchi, '20).
- Our new description of $X(\mathbb{Z}_p)_2$ gives an explicit, purely algebraic description in terms of division polynomials, independent of p.

<u>Theorem (Balakrishnan–B., in progress):</u>

Suppose that Q is an unexpected point on X, of order $N \leq 50$. Then

 $N \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 12\} \cup \{15\}$.

(Balakrishnan–B.)

X is the once-punctured elliptic curve with equation $y^2 + xy = x^3 - 262888x - 62568608$. rank 0

Then the 15-torsion points with x-coordinate $-123 \pm 295\sqrt{5}$ lie in $X(\mathbb{Z}_p)_2$ whenever they are \mathbb{Q}_p -rational.

Happy Birthday Minhyong!