Problem Set 4: Galois action and non-abelian cohomology

- 1. Let $Y = \mathbb{P}_{\mathbb{Q}}^1 \setminus \{0, 1, \infty\}$ be the thrice-punctured line over \mathbb{Q} and let $x_0 \in Y(\mathbb{Q})$ be any rational basepoint. Let $U = \pi_1^{\mathbb{Q}_p}(Y_{\overline{\mathbb{Q}}}; x_0)$ be the \mathbb{Q}_p -prounipotent étale fundamental group of $Y_{\overline{\mathbb{Q}}}$. By considering the map $Y \to \mathbb{G}_m^2$ given by $z \mapsto (z, 1-z)$, or otherwise, show that U^{ab} is $G_{\mathbb{Q}}$ -equivariantly isomorphic to the vector group associated to $\mathbb{Q}_p(1)^2$. Using this, determine the graded pieces of the weight filtration on U (you don't need to give a closed form expression for their dimensions, but you should be specific about their Galois actions).
- 2. Let X be a hyperelliptic curve over a characteristic 0 field K, and let $x_0 \in X(K)$ be a K-rational Weierstrass point. Let $U = \pi_1^{\mathbb{Q}_p}(X_{\overline{K}}; x_0)$ be the \mathbb{Q}_p -pro-unipotent étale fundamental group, let $U_n := U/\Gamma^{n+1}U$ denote the *n*th quotient by the descending central series, and let $V_n = \Gamma^n U/\Gamma^{n+1}U$ denote the *n*th graded piece of the descending central series, so that the sequence

$$1 \to V_n \to U_n \to U_{n-1} \to 1$$

is a G_K -equivariant central extension. Show that for n = 2, the sequence

$$0 \to V_2 \to \operatorname{Lie}(U_2) \to \operatorname{Lie}(U_1) \to 0$$

on Lie algebras splits as a sequence of G_K -representations. [Hint: use the hyperelliptic involution on X.]

3. Let Π and G be topological groups, and endow Π with the *trivial* G-action (every element of G acts as the identity). Show that

$$\mathrm{H}^{1}(G,\Pi) = \mathrm{Hom}^{\mathrm{out}}(G,\Pi) = \mathrm{Hom}(G,\Pi)/\Pi$$

is the set of continuous outer homomorphisms $G \to \Pi$, i.e. the set of continuous group homomorphisms modulo the conjugation action of Π .

Now suppose that $G = \mathbb{Z}^2$ and $\Pi = D_8$ is the dihedral group of order eight. Show that there is no way to put a group structure on $\mathrm{H}^1(G, \Pi)$ and $\mathrm{H}^1(G, \Pi^{\mathrm{ab}})$ for which the map

$$\mathrm{H}^{1}(G,\Pi) \to \mathrm{H}^{1}(G,\Pi^{\mathrm{ab}})$$

is a group homomorphism. (This shows that there is really no hope for putting a sensible group structure on non-abelian cohomology.)

$$1 \to Z \to \Pi \to Q \to 1$$

be a G-equivariant topologically split short exact sequence of topological groups endowed with continuous actions of G. Show that there is a coboundary map

$$\delta^0 \colon \mathrm{H}^0(G, Q) \to \mathrm{H}^1(G, Z)$$

(a map of pointed sets) for which the sequence

$$1 \to \mathrm{H}^{0}(G, Z) \to \mathrm{H}^{0}(G, \Pi) \to \mathrm{H}^{0}(G, Q) \xrightarrow{\delta^{0}} \mathrm{H}^{1}(G, Z) \to \mathrm{H}^{1}(G, \Pi) \to \mathrm{H}^{1}(G, Q)$$

is exact. Show moreover that there is a right action of $\mathrm{H}^{0}(G, Q)$ on $\mathrm{H}^{1}(G, Z)$ whose orbits are exactly the fibres of $\mathrm{H}^{1}(G, Z) \to \mathrm{H}^{1}(G, \Pi)$ and such that the stabiliser of the distinguished point of $\mathrm{H}^{1}(G, Z)$ is the image of $\mathrm{H}^{0}(G, \Pi) \to \mathrm{H}^{0}(G, Q)$.

- 5. Let Π be a connected groupoid in topological spaces for which each $\Pi(x, y)$ is endowed with a continuous action of a topological group G in a manner compatible with composition, identities and inversion.
 - Let x_0, y_0 be vertices of Π . Show that $\Pi(y_0)$ is *G*-equivariantly isomorphic to a Serre twist $_{\xi}\Pi(x_0)$ of $\Pi(x_0)$ for some $\xi \in \mathbb{Z}^1(G, \Pi(x_0))$. (This isomorphism will depend on some choices, which you should specify.)
 - Show that the composite isomorphism

$$\mathrm{H}^{1}(G, \Pi(y_{0})) \cong \mathrm{H}^{1}(G, \xi \Pi(x_{0})) \cong \mathrm{H}^{1}(G, \Pi(x_{0}))$$

is independent of any choices. If ϕ_{x_0,y_0} denotes this composite isomorphism, show moreover that it satisfies the cocycle condition

$$\phi_{x_0, z_0} = \phi_{x_0, y_0} \circ \phi_{y_0, z_0}$$

for all vertices x_0, y_0, z_0 . (So the identifications $\mathrm{H}^1(G, \Pi(y_0)) \cong \mathrm{H}^1(G, \Pi(x_0))$ are canonical and coherent.)

• Show that the abstract non-abelian Kummer maps $j: V(\Pi) \to H^1(G, \Pi(x_0))$ associated to Π are independent of the choice of basepoint x_0 , in the sense that the square

$$V(\Pi) = V(\Pi)$$

$$\downarrow^{j} \qquad \qquad \downarrow^{j}$$

$$H^{1}(G, \Pi(y_{0})) \xrightarrow{\phi_{x_{0},y_{0}}} H^{1}(G, \Pi(x_{0}))$$

commutes for all vertices x_0, y_0 .

4. Let