Problem Set 1: Groupoids and profinite étale fundamental groups

- 1. In this exercise, we verify that several basic properties of groups carry over to groupoids. Let Π be a groupoid on vertex-set V.
 - (a) (Uniqueness of identities) Suppose that $1'_x \in \Pi(x,x)$ is an element such that

 $\gamma_1 \cdot 1'_x = \gamma_1$ and $1'_x \cdot \gamma_2 = \gamma_2$

for all $\gamma_1 \in \Pi(x, y)$ and all $\gamma_2 \in \Pi(w, x)$ for all $y, w \in V$. Show that we have $1'_x = 1_x$.

(b) (Uniqueness of inverses) Suppose that $\gamma \in \Pi(x,y)$ and $\gamma' \in \Pi(y,x)$ are elements such that

$$\gamma' \cdot \gamma = 1_x$$
 and $\gamma \cdot \gamma' = 1_y$.

Show that we have $\gamma' = \gamma^{-1}$.

- 2. Let Π be a groupoid on vertex-set V.
 - (a) Show that if $\Pi(x, y) \neq \emptyset$ then there is a *canonical* bijection

{normal subgroups $N_x \leq \Pi(x)$ } \cong {normal subgroups $N_y \leq \Pi(y)$ }.

(You should describe this bijection explicitly.) Show that under this correspondence, the normal subgroups of finite index in $\Pi(x)$ correspond to the normal subgroups of finite index in $\Pi(y)$.

(b) Show that if normal subgroups $N_x \leq \Pi(x)$ and $N_y \leq \Pi(y)$ correspond under the above bijection, then there is a canonical bijection

$$\Pi(x, y) / N_x \cong N_y \backslash \Pi(x, y) \,.$$

(c) Recall that the profinite completion Π^{\wedge} of Π was defined by

$$\Pi(x,y)^{\wedge} = \varprojlim_{N_x} (\Pi(x,y)/N_x) = \varprojlim_{N_y} (N_y \setminus \Pi(x,y)) +$$

where the first inverse limit is taken over all finite index normal subgroups $N_x \leq \Pi(x)$ and the second is taken over all finite index normal subgroups $N_y \leq \Pi(y)$. Show carefully that the composition law on Π induces a composition law on Π^{\wedge} making it into a groupoid on object-set V. Show moreover that the composition law and inversion maps in Π^{\wedge} are continuous for the natural profinite topology on the sets $\Pi(x, y)^{\wedge}$.

3. Let $X = \mathbb{G}_m$ be the multiplicative group over an algebraically closed field \overline{K} of characteristic 0. A theorem of Serre says that the connected finite étale coverings of X, up to isomorphism, are given by the *n*th power maps

$$[n]\colon \mathbb{G}_m\to\mathbb{G}_m$$

Based on this, what is the étale fundamental group of X based at 1? And for $x \in \overline{K}^{\times}$, what is the torsor of paths $\pi_1^{\text{ét}}(\mathbb{G}_m; 1, x)$? Try to give your answer in as canonical a form as you can.

- 4. Profinite étale fundamental groups in positive characteristic are in general more complicated than in characteristic 0. Let k be a field, and consider the affine line $\mathbb{A}_k^1 = \operatorname{Spec}(k[t])$ over k.
 - (a) If k is algebraically closed of characteristic 0, show that $\pi_1^{\text{\'et}}(\mathbb{A}_k^1; 0) = 1$ is the trivial group (by combining results from class).
 - (b) If however k is algebraically closed of positive characteristic p, then there are finite étale coverings of \mathbb{A}^1_k given by the Artin–Schreier coverings

$$X_f \coloneqq \operatorname{Spec}(k[t, x]/(x^p - x - f(t)))$$

for some element $f(t) \in k[t]$. (You may take it as given that the projection $X_{f(t)} \to \mathbb{A}_k^1 = \operatorname{Spec}(k[t])$ is finite étale.)

- Show that X_{f_1} and X_{f_2} are isomorphic as coverings of \mathbb{A}^1_k if and only if $a_1f_1(t) a_2f_2(t) = g(t)^p g(t)$ for some $g(t) \in k[t]$ and $a_1, a_2 \in \mathbb{F}_p^{\times}$.
- Show that X_f is connected if and only if f(t) is not of the form $g(t)^p g(t)$ for $g(t) \in k[t]$.
- Deduce that $\pi_1^{\text{ét}}(\mathbb{A}_k^1) \neq 1$ is not the trivial group.
- Show that if k'/k is a non-trivial extension of algebraically closed fields of characteristic p, then the induced map

$$\pi_1^{\text{\acute{e}t}}(\mathbb{A}_{k'}^1;0) \to \pi_1^{\text{\acute{e}t}}(\mathbb{A}_k^1;0)$$

is not an isomorphism.