
Math 283Z Final Exam: Solutions

Problem 1

Let U be a pro-unipotent group over a field F of characteristic 0.

1. Write down the universal property satisfied by the abelianisation Uab of U .

2. Show that if S ⊆ U(F ) is a set of F -rational points on U , then the
subgroup generated by S is Zariski-dense in U if and only if the subgroup
generated by its image in Uab is Zariski-dense. Deduce that U is finitely
generated (meaning that there exists a finite set S such that the subgroup
it generates is Zariski-dense) if and only if Uab is finite-dimensional, i.e. a
vector group.

3. Show that if ϕ : U1 → U2 is a homomorphism of pro-unipotent groups such
that ϕab : Uab

1 → Uab
2 is surjective, then ϕ is surjective. Show moreover

that if ϕab is an isomorphism and U2 is free, then ϕ is an isomorphism.

Results from class may be used without proof, provided that they are clearly
and precisely stated.

Solution

1. The abelianisation Uab is an abelian pro-unipotent group with a homo-
morphism ϕ : U → Uab of pro-unipotent groups. This satisfies the fol-
lowing universal property: for any homomorphism ψ : U → U ′ of pro-
unipotent groups with U ′ abelian, there exists a unique homomorphism
ψ′ : Uab → U ′ of pro-unipotent groups making the following triangle com-
mute

U Uab

U ′ .

ϕ

ψ
ψ′

2. Let U0 ⊆ U be the Zariski-closure of the subgroup generated by S. U0 is
a subgroup-scheme of U , and so is also pro-unipotent. The Zariski-closure
of the subgroup generated by the image of S in Uab is equal to the scheme-
theoretic image of U0 → Uab. So we want to prove that U0 = U if and
only if U0 → Uab is surjective as a homomorphism of group-schemes.



Using the equivalence between pro-unipotent groups and pro-nilpotent Lie
algebras and using an inverse limit argument, it suffices to prove that if u
is a finite-dimensional nilpotent Lie algebra and u0 ≤ u is a Lie subal-
gebra, then u0 = u if and only if u0 surjects onto uab. The “only if”
direction is immediate; we focus on the “if” direction. We proceed by
induction over the length of the descending central series on u. Suppose
that Γn+1u = 0 for some n ≥ 2 and we know the result for all Lie subal-
gebras of u/Γnu. Since u0 surjects onto uab = (u/Γnu)ab, we know by the
inductive hypothesis that it surjects onto u/Γnu. But we know that the
Lie bracket

uab ⊗F
Γn−1u

Γnu
→ Γnu

is surjective. Since u0 surjects onto uab and u/Γnu, it follows by taking
Lie brackets of appropriate elements of u0 that it contains Γnu. So u0 = u
and the induction is complete.

For the part regarding finite generation, if U is finitely generated then so
too is the pro-vector group Uab, which is thus a vector group. Conversely,
if Uab is a vector group, then a vector space basis of Uab(F ) is a finite
subset which generates a Zariski-dense subgroup. So choosing any lift of
this basis to U(F ) gives a finite generating set for U .

3. Suppose that ϕab is surjective. If we let U0 denote the scheme-theoretic
image of ϕ, then U0 surjects onto Uab

2 and so U0 = U2 by the first part.
So ϕ is surjective.

Now suppose that ϕab is an isomorphism and U2 is free. So ϕ is sur-
jective by the first part, and freeness of U2 implies that ϕ has a left in-
verse ψ : U2 → U1 such that ϕ ◦ ψ = 1U2

. Now ψab is the inverse of ψab,
so is surjective and ψ is surjective by the first part again. Since ψ is sur-
jective and has a right inverse, it is an isomorphism and so ϕ was already
an isomorphism.



Problem 2

Let F be a characteristic 0 field. Let T denote the following ⊗-category. The
objects of T are finite-dimensional graded vector spaces

V =
⊕
i∈Z

Vi

over F , endowed with an endomorphism

N = NV : V → V

which is graded of degree −2 (N(Vi) ⊆ N(Vi−2)) with the property that

N i : Vi → V−i

is an isomorphism for all i ≥ 0. Morphisms are defined in the obvious way. The
tensor product on T is given by the usual tensor product V 1 ⊗ V 2 of graded
vector spaces, endowed with the endomorphism NV 1⊗V 2 = NV 1 ⊗ 1V 2 + 1V 1 ⊗
NV 2 where 1V denotes the identity on V . The tensor unit is 1 = F , placed in
degree 0 for the grading, with N1 = 0. You may use without proof the fact that
this ⊗-category is neutral Tannakian over F , and that the forgetful functor is a
fibre functor.

1. Show that for all n ≥ 1 there is a unique simple object of T of dimension n
(simple means that it has no subobjects in T other than itself and the zero
subobject). Describe this object explicitly. Show moreover that every
object of T decomposes as a direct sum of simple objects.

2. Let V be a representation of SL2.

(a) Let T ⊂ SL2 denote the algebraic subgroup consisting of elements of
the form (

λ 0
0 λ−1

)
,

so that T is isomorphic to the multiplicative group Gm. Briefly de-
scribe (without proof) how the action of T on V corresponds to a
grading on V .

(b) Let U ⊂ SL2 denote the algebraic subgroup consisting of elements of
the form (

1 0
α 1

)
,

so that U is isomorphic to the additive group Ga. Briefly describe
(without proof) how the action of U on V corresponds to a nilpotent
endomorphism N of V .

(c) Show that the above grading and nilpotent endomorphism make V
into an object of T .



3. Prove that the above construction defines a ⊗-equivalence from the cate-
gory of SL2-representations to T . Conclude that the Tannaka group of T ,
based at the forgetful functor, is isomorphic to SL2.

Standard results about the representation theory of SL2 may be used without
proof, provided that they are clearly and precisely stated. You may look up
references for the representation theory of SL2; if you do, you must include
inline citations where these results are used.

Solution

1. For n ≥ 0 let V (n) denote the (n+1)-dimensional vector space with basis

en, en−2, en−4, . . . , e−n .

We endow V (n) with the grading placing ei in degree i, and define an
endomorphism N of V (n) by

N(ei) :=

{
ei−2 i ̸= −n ,
0 i = −n .

This makes V (n) into an object of T . We claim that it is simple. If V ≤
V (n) were a non-zero subobject, then since it is a graded subspace, it
must contain some ei. Applying the operator N some number of times
if necessary, we deduce that e−n ∈ V−n. So we also have Vn ̸= 0, and
so en ∈ Vn. Applying N again, we see that ei ∈ Vi for all i, and so V =
V (n). This completes the proof that V (n) is simple.

Next we show that every object of T is a direct sum of copies of the
objects V (n). This proves that every object is completely reducible, and
that the V (n) are the only simple objects. For this, suppose that V is
a non-zero object of T , and let n be the largest non-negative integer
such that Vn ̸= 0. Choose a non-zero element en ∈ Vn. Since V is an
object of T , we know that Nn(en) ̸= 0, and so the elements N j(en) are
non-zero elements of Vn−2j for 0 ≤ j ≤ n. Moreover, maximality of n
ensures that V−n−2 = 0, and so Nn+1(en) = 0. So the subspace spanned
by N j(en) for 0 ≤ j ≤ n is a subobject of V isomorphic to V (n).

We now want to show that this copy of V (n) has a complement. Choose a
vector space complementW−n to the space spanned byNn(en) inside V−n.
Then define subspaces Wi ≤ Vi by

W2j−n = (N j)−1(W−n) = {e ∈ V2j−n : N j(e) ∈W−n}

for 0 ≤ j ≤ n, and Wi = Vi otherwise. It is easy to see that W2j−n is a
vector space complement to the space spanned by Nn−j(en) inside V2j−n
for all 0 ≤ j ≤ n, and so V = V (n) ⊕W as vector spaces, where W =⊕

iWi. Moreover, W is clearly stable under N and has the property



that N i : Wi → W−i is an isomorphism for all i ≥ 0 (e.g. it is certainly
injective, and the dimensions match). So W is a subobject in T and we
have the desired complement.

2. (a) The action of T corresponds to the grading V =
⊕

i Vi, where the

matrix

(
λ 0
0 λ−1

)
acts on Vi by multiplication by λi.

(b) Since U is unipotent, it acts on V unipotently. Taking the logarithm
of this action shows that there is a unique nilpotent endomorphism N
of V such that (

1 0
α 1

)
· v = eαN (v)

for all v ∈ V .

(c) If V 1 and V 2 are two representations of SL2, then it is easy to check
that the grading on V 1 ⊗F V 2 coming from the action of T is the
tensor product of the gradings on V 1 and V 2, and that the endo-
morphism NV 1⊗V 2 coming from the action of U is equal to NV 1 ⊗
1V 2 +1V 1 ⊗NV 2 . In other words, the above descriptions are defining
a ⊗-functor G from the ⊗-category of representations of SL2 to the
⊗-category of finite-dimensional graded vector spaces with a nilpo-
tent endomorphism. We want to show that the image of this functor
is contained in T .

Now every representation of SL2 is a direct sum of copies of Symn(std),
where std is the standard 2-dimensional representation of SL2. Since
the functor G commutes with direct sums and symmetric powers, it
thus suffices to show that G(std) ∈ T . But this is easy: std has a
basis {e1, e−1} where the action of SL2 is given by(

λ 0
0 λ−1

)
· e1 = λe1 ,

(
λ 0
0 λ−1

)
· e−1 = λ−1e−1 ,(

1 0
α 1

)
· e1 = e1 + αe−1 ,

(
1 0
α 1

)
· e−1 = e−1 .

So e±1 is in degree ±1 for the grading, and the endomorphism N
acts via N(e1) = e−1 and N(e−1) = 0. This makes G(std) into an
object of T (namely, it is isomorphic to V (1)).

3. To show that the functor G above is a ⊗-equivalence, we first note that

V (n) ∼= Symn(V (1))

for all n ≥ 0. Indeed, Symn(V (1)) has a basis given by the elements
n!

(n−j)!e
n−j
1 ej−1 for 0 ≤ j ≤ n, which are acted on by N by

N

(
n!

(n− j)!
en−j1 ej−1

)
=

n!

(n− j − 1)!
en−j−1
1 ej+1

−1



for 0 ≤ j < n. So Symn(V (1)) is isomorphic to V (n) (via the isomorphism
taking en−2j to

n!
(n−j)!e

n−j
1 ej−1).

Thus, we know that

G(Symn(std)) ∼= Symn(G(std)) ∼= Symn(V (1)) ∼= V (n)

for all n ≥ 0. In light of the complete reducibility of objects of T , this
means that G is essentially surjective. It remains to show that it is fully
faithful, i.e. that the map

HomSL2
(V 1, V 2) → HomT (G(V

1), G(V 2)) (∗)

is bijective for all representations V 1 and V 2 of SL2. Since all repre-
sentations of SL2 are completely irreducible, one immediately reduces to
the case that V 1 and V 2 are irreducible representations of SL2, i.e. that
V 1 = Symn1(std) and V 2 = Symn2(std) for some n1, n2 ≥ 0. If n1 ̸= n2,
then both sides of (∗) are zero (no homomorphisms between nonisomor-
phic simple objects), while if n1 = n2 then both sides are one-dimensional,
spanned by the class of the identity by Schur’s Lemma. This concludes
the proof that G is fully faithful, hence a ⊗-equivalence.



Problem 3

Let E/Q be an elliptic curve, and let Y = E \ {0} be the complement of the
identity in E. Let U be the Qp-pro-unipotent étale fundamental group of Y
based at some rational basepoint b. Let

U = W−1U ⊵W−2U ⊵ . . .

denote the weight filtration on U (which is equal to the descending central series
up to reindexing), and adopt the usual notation

Un :=
U

W−n−1U
and Vn :=

W−nU

W−n−1U
.

1. What is the dimension of V1 and V2?

2. Show that the commutator pairing in the group U2 induces an isomorphism

2∧
V1 ∼= V2

of GQ-representations. Using this, describe the Galois action on V2. [Hint:
use the Weil pairing of the elliptic curve E, recalling that V1 is the Qp-
linear Tate module of E.]

3. Now assume that E has Mordell–Weil rank 1 and finite Tate–Shafarevich
group. Determine the dimensions of the global Bloch–Kato Selmer groups

H1
f (GQ, V1) and H1

f (GQ, V2) .

Determine also the dimensions of the local Bloch–Kato Selmer groups

H1
f (Gp, V1) and H1

f (Gp, V2) .

4. Under the above assumptions, conclude that Y(Z) is finite for every inte-
gral model Y of Y . [Use the Chabauty–Kim criterion for the quotient U2.]

Results from class may be used without proof, provided that they are clearly
and precisely stated.

Solution

1. By comparison with the complex numbers, we know that U is the free
Qp-pro-unipotent group on two generators (since Y (C) is a 2-dimensional
torus minus a single point). Moreover, since W−2U is the kernel of the
map

U → π
Qp

1 (EQ; b)
ab = π

Qp

1 (YQ; b)
ab ,

it follows that W−2U = Γ2U , and thence that W−kU = ΓkU for all k ≥
1. So the weight filtration on U is, up to reordering, the same as the



descending central series. We already computed in class the dimensions of
the graded pieces of the descending central series on the free pro-unipotent
group on two generators: this gives

dim(V1) = 2 and dim(V2) = 1 .

2. We know that the commutator pairing is aGQ-equivariant surjection; since
both sides have the same dimension, it is an isomorphism. Now we have

V2 ∼=
2∧
V1 ∼=

2∧
VpE ∼= Qp(1)

where VpE is the Qp-linear Tate module of E, using the Weil pairing for
the final identification. So the action on V2 is the same as on Qp(1), i.e.
via the cyclotomic character.

3. Results we saw in class at various points give

dimH1
f (GQ, V1) = r = 1 dimH1

f (GQ, V2) = dimH1
f (GQ,Qp(1)) = 0

dimH1
f (Gp, V1) = g = 1 dimH1

f (Gp, V2) = dimH1
f (Gp,Qp(1)) = 1 .

(Finiteness of the Tate–Shafarevich group is used in the first equality
above.)

4. The above dimension calculations show that

dimH1
f (GQ, V1) + dimH1

f (GQ, V2) < dimH1
f (Gp, V1) + dimH1

f (Gp, V2) ,

and so the Chabauty–Kim criterion for the quotient U2 gives finiteness
of Y(Z).



Problem 4

Write an essay on the profinite étale fundamental group, explaining how Grothendieck
generalised the notion of fundamental groups of topological spaces to schemes.
Your essay should include:

� A definition of the profinite étale fundamental group, including the struc-
ture maps.

� A definition of the topology on the étale fundamental group, and a proof
that it is profinite. (You do not need to prove that the group operations
are continuous.)

� A statement and proof of the comparison theorem with the usual funda-
mental group of schemes of finite type over C.

� One or more examples where you determine the fundamental group/oid
of a scheme.

You may assume that your reader is familiar with the basic language of alge-
braic geometry, including the definition and basic properties of finite and étale
morphisms. Results which were not proved in class (e.g. the Riemann Existence
Theorem for coverings) do not need to be proved, but you should clearly and
precisely state any results you rely on.

Solution

[Omitted.]


