Problem Set 6: The Chabauty-Kim criterion

1. Let $Y=\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{ \pm i, \infty\}=\operatorname{Spec}\left(\mathbb{Q}\left[t, \frac{1}{t^{2}+1}\right]\right)$ denote the complement of the divisor consisting of the points $i,-i$ and ∞ inside $\mathbb{P}_{\mathbb{Q}}^{1}$. (Note that this divisor is defined over \mathbb{Q}, even though the points i and $-i$ are not individually defined over \mathbb{Q}.) Let $\mathcal{Y}=\mathbb{P}_{\mathbb{Z}}^{1} \backslash\{ \pm i, \infty\}=\operatorname{Spec}\left(\mathbb{Z}\left[t, \frac{1}{t^{2}+1}\right]\right)$ be its standard integral model over \mathbb{Z}, and let S be a finite set of prime numbers. Let U denote the \mathbb{Q}_{p}-pro-unipotent étale fundamental group of $Y_{\overline{\mathbb{Q}}}$, and $V_{2 n}$ its graded pieces with respect to the weight filtration, as usual.
(a) Explain briefly why U is profinite free on two generators and $V_{n}=0$ for n odd.
(b) Show that $V_{2}=\mathbb{Q}_{p}(1) \oplus \mathbb{Q}_{p}(\chi)(1)$, where $\chi: G_{\mathbb{Q}} \rightarrow\{ \pm 1\}$ is the quadratic character associated to the extension $\mathbb{Q}(i) / \mathbb{Q}$. (Here, $\mathbb{Q}_{p}(\chi)$ denotes the one-dimensional vector space on which $G_{\mathbb{Q}}$ acts via the character χ, and $V(1)$ is shorthand for $V \otimes \mathbb{Q}_{p}(1)$.)
(c) Show that for $n \geq 1$ there are integers r_{n}^{+}and r_{n}^{-}such that

$$
V_{2 n}=\mathbb{Q}_{p}(n)^{\oplus r_{n}^{+}} \oplus \mathbb{Q}_{p}(\chi)(n)^{\oplus r_{n}^{-}}
$$

(d) Show that $r_{n}^{-} \geq 1$ for all $n \geq 1$.
(e) If p is a prime split in $\mathbb{Q}(i)$, explain briefly why

$$
\operatorname{dim} \mathrm{H}_{f}^{1}\left(G_{p}, \mathbb{Q}_{p}(\chi)(n)\right)=1
$$

for $n \geq 1$. (Optional: prove the same for any p.)
(f) A result of Soule ${ }^{1}$ says that for any number field K and odd p, we have

$$
\operatorname{dim} \mathrm{H}^{1}\left(G_{K}, \mathbb{Q}_{p}(n)\right)= \begin{cases}r_{K}+s_{K} & \text { if } n \geq 3 \text { odd } \\ s_{K} & \text { if } n \geq 2 \text { even }\end{cases}
$$

where r_{K} denotes the number of real embeddings of K and s_{K} denotes the number of pairs of conjugate complex embeddings of K. Using this result, show that

$$
\operatorname{dim} \mathrm{H}^{1}\left(G_{\mathbb{Q}}, \mathbb{Q}_{p}(\chi)(n)\right)= \begin{cases}0 & \text { if } n \geq 3 \text { odd } \\ 1 & \text { if } n \geq 2 \text { even }\end{cases}
$$

(g) Applying the Chabauty-Kim criterion to the quotient $U_{2 N}$ for $N \gg$ 0 , show that $\mathcal{Y}\left(\mathbb{Z}_{S}\right)$ is finite. Conclude that for any finite set S, there are only finitely many integers a such that all prime factors of $a^{2}+1$ lie in S.

[^0]
[^0]: ${ }^{1}$ This is the same result we used in class, just stated more generally.

