Problem Set 6: The Chabauty–Kim criterion

- 1. Let $Y = \mathbb{P}^1_{\mathbb{Q}} \setminus \{\pm i, \infty\} = \operatorname{Spec}(\mathbb{Q}[t, \frac{1}{t^2+1}])$ denote the complement of the divisor consisting of the points i, -i and ∞ inside $\mathbb{P}^1_{\mathbb{Q}}$. (Note that this divisor is defined over \mathbb{Q} , even though the points i and -i are not individually defined over \mathbb{Q} .) Let $\mathcal{Y} = \mathbb{P}^1_{\mathbb{Z}} \setminus \{\pm i, \infty\} = \operatorname{Spec}(\mathbb{Z}[t, \frac{1}{t^2+1}])$ be its standard integral model over \mathbb{Z} , and let S be a finite set of prime numbers. Let U denote the \mathbb{Q}_p -pro-unipotent étale fundamental group of $Y_{\overline{\mathbb{Q}}}$, and V_{2n} its graded pieces with respect to the weight filtration, as usual.
 - (a) Explain briefly why U is profinite free on two generators and $V_n = 0$ for n odd.
 - (b) Show that $V_2 = \mathbb{Q}_p(1) \oplus \mathbb{Q}_p(\chi)(1)$, where $\chi : G_{\mathbb{Q}} \to \{\pm 1\}$ is the quadratic character associated to the extension $\mathbb{Q}(i)/\mathbb{Q}$. (Here, $\mathbb{Q}_p(\chi)$ denotes the one-dimensional vector space on which $G_{\mathbb{Q}}$ acts via the character χ , and V(1) is shorthand for $V \otimes \mathbb{Q}_p(1)$.)
 - (c) Show that for $n\geq 1$ there are integers r_n^+ and r_n^- such that

$$V_{2n} = \mathbb{Q}_p(n)^{\oplus r_n^+} \oplus \mathbb{Q}_p(\chi)(n)^{\oplus r_n^-}.$$

- (d) Show that $r_n^- \ge 1$ for all $n \ge 1$.
- (e) If p is a prime split in $\mathbb{Q}(i)$, explain briefly why

$$\dim \mathrm{H}^{1}_{f}(G_{p}, \mathbb{Q}_{p}(\chi)(n)) = 1$$

for $n \ge 1$. (Optional: prove the same for any p.)

(f) A result of Soulé¹ says that for any number field K and odd p, we have

$$\dim \mathrm{H}^{1}(G_{K}, \mathbb{Q}_{p}(n)) = \begin{cases} r_{K} + s_{K} & \text{if } n \geq 3 \text{ odd,} \\ s_{K} & \text{if } n \geq 2 \text{ even,} \end{cases}$$

where r_K denotes the number of real embeddings of K and s_K denotes the number of pairs of conjugate complex embeddings of K. Using this result, show that

$$\dim \mathrm{H}^{1}(G_{\mathbb{Q}}, \mathbb{Q}_{p}(\chi)(n)) = \begin{cases} 0 & \text{if } n \geq 3 \text{ odd,} \\ 1 & \text{if } n \geq 2 \text{ even} \end{cases}$$

(g) Applying the Chabauty-Kim criterion to the quotient U_{2N} for $N \gg 0$, show that $\mathcal{Y}(\mathbb{Z}_S)$ is finite. Conclude that for any finite set S, there are only finitely many integers a such that all prime factors of $a^2 + 1$ lie in S.

¹This is the same result we used in class, just stated more generally.